Magnesium Acetyl Taurate (synonym Magnesium Acetyltaurinate) is a patented magnesium salt of acetyl taurine, with each magnesium ion bound to two acetyl taurine molecules. Magnesium is one of the most abundant minerals in the body and plays a vital role in supporting the function of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with magnesium, so all enzymes utilizing ATP require magnesium to support their activity. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in promoting healthy glucose metabolism (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), it’s necessary for muscle and nerve function. Acetyl taurine (N-acetyltaurinate is a synonym) is an acetylated form of the sulfur-containing amino acid taurine. Taurine is present in nearly all tissues, and is the most abundant free amino acid in muscle, heart, brain, and retina. Taurine has important roles in the human body in osmoregulation, as an antioxidant, and as a neuromodulator. Taurine is present in all ocular tissues—retina, lens, cornea, etc.—and is critical for retinal and photoreceptor cell function. Taurine also supports neuroprotective functions in the central nervous system [1,2]. Magnesium Acetyl Taurate is considered a brain form of magnesium because, when magnesium is complexed with two acetyl taurine molecules, it results in a form of magnesium with high brain bioavailability [3].*
Supports sleep*
Supports cardiovascular function*
Supports mood*
Supports musculoskeletal health*
Supports cellular health*
Magnesium Acetyl Taurate is sourced from the patent holder for this ingredient.
Magnesium Acetyl Taurate is a non-GMO, gluten-free, and vegan ingredient.
The Recommended Dietary Allowances (RDA) for magnesium in adults varies from 310 to 420 depending upon age and gender. Magnesium is one of the most common dietary insufficiencies—a majority of Americans of all ages ingest less magnesium from food than the recommended amount. The established upper limit (UL) of magnesium from supplements has been set at 350 mg for adults, which is lower than the RDA for some age groups and genders (this is in recognition that even diets poor in magnesium contribute some towards the RDA). Supplying even a modest amount of supplemental magnesium can help close this nutritional gap for most people [4]. The amount of magnesium, as magnesium acetyl taurate alone or combined with other forms of magnesium, in a Qualia formula can vary depending on the role of magnesium in the formula and the formula’s intended health purpose. A serving size of a Qualia product may contain an amount of magnesium we intend to augment dietary intake (e.g., 8-20% of the RDA) or the full 350 mg UL amount.*
Supports the synthesis of ATP by ATP synthase in mitochondria* [5,6]
Part of a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes* [7]
Supports the activity of rate-limiting enzymes involved in carbohydrate and lipid metabolism* [7,8]
Supports the activity of rate-limiting enzymes involved protein and nucleic acid synthesis* [7,8]
Helps maintain healthy insulin sensitivity* [9,10]
Supports healthy cellular sodium and potassium influx and efflux* [7]
Supports healthy cellular calcium influx and balanced calcium signaling* [7,8]
Supports the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis* [11]
Maintains stability of proteins, nucleic acids, chromosomes, and biological membranes* [7]
Supports healthy cardiac muscle contraction and heart rhythm* [8,12]
Supports healthy vascular tone* [8,12]
Supports healthy platelet function* [8,13]
Supports hearing* [14–20]
Supports healthy neurotransmitter signaling and optimal neurological function* [8]
Supports the healthy activity of the glutamate N-methyl-D-aspartate (NMDA) receptor* [21,22]
Supports healthy glutamate dehydrogenase (GDH) enzyme function that converts glutamate to α-ketoglutarate, and vice versa* [23,24]
Supports healthy serotonin N-acetyltransferase function - an enzyme that is involved in the day/night rhythmic production of melatonin from serotonin* [25,26]
Supports healthy brain-derived neurotrophic factor (BDNF) function* [22,27,28]
Supports healthy neural stem cell proliferation* [29]
Supports healthy brain mitochondrial function* [29]
Supports mental well-being* [30,31]
Supports healthy behavioral and physiological responses to stress* [28,32–35]
Supports optimal sleep quality* [36–39]
Supports healthy EEG and neuroendocrine responses during sleep* [40,41]
Supports sleep organization and regulation* [42–45]
Supports exercise tolerance in contexts of poor sleep* [46]
Supports healthy muscle contraction* [8,47]
Supports optimal muscle strength* [48,49]
Supports healthy bone metabolism/remodeling and optimal calcium absorption* [7]
Supports healthy calcitonin and parathyroid hormone activity* [7]
Supports optimal bone formation* [7]
Supports a healthy composition of the gut microbiota* [50–52]
Commonly supplemented with calcium for bone support*
Supports vitamin D metabolism* [53]
B-complex vitamins and melatonin supplementation for sleep support* [54]
Zinc and melatonin supplementation for sleep support* [55]
Vitamin B6 for mood support* [56,57]
Hawthorn and California poppy for mood support* [58]
Antioxidant vitamins for hearing support* [59–61]
Supports synaptic long-term potentiation* [62]
Supports GABAergic neurotransmission* [63–66]
Supports glycinergic neurotransmission* [67]
Supports brain-derived neurotrophic factor (BDNF)* [66]
Supports neuroprotective functions* [68]
Supports cerebral blood flow* [68]
Supports neuronal mitochondrial function* [68]
Supports positive affective responses and calm behaviors (in animals)* [67,69–73]
Supports resistance to visual fatigue* [74]
Supports synaptic transmission in retinal ganglion cells* [75]
Supports eyes against stress from blue light* [76–78]
Supports retinal and optic nerve neuroprotective functions* [79–88]
Supports retinal antioxidant defense functions* [81,82,89]
Supports photoreceptor cell visual function* [79]
Supports mitochondrial respiratory chain function* [90,91]
Supports antioxidant defenses* [92–95]
Supports tissue protection from oxidative damage* [70,95–97]
Supports healthy vascular endothelial cell function* [98–100]
Supports healthy cardiac muscle cell function* [96,97]
Supports healthy blood flow* [98,100]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
REFERENCES
[1]S.S. Oja, P. Saransaari, Adv. Exp. Med. Biol. 975 Pt 1 (2017) 89–94.
[2]H. Ripps, W. Shen, Mol. Vis. 18 (2012) 2673–2686.
[3]M. Ates, S. Kizildag, O. Yuksel, F. Hosgorler, Z. Yuce, G. Guvendi, S. Kandis, A. Karakilic, B. Koc, N. Uysal, Biol. Trace Elem. Res. 192 (2019) 244–251.
[4](n.d.).
[5]Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.
[6]A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.
[7]S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.
[8]W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.
[9]M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.
[10]M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.
[11]S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.
[12]B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.
[13]M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.
[14]Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.
[15]J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.
[16]F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.
[17]A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.
[18]B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.
[19]J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.
[20]M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.
[21]J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.
[22]N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.
[23]L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.
[24]B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.
[25]D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.
[26]A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.
[27]B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.
[28]J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.
[29]S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.
[30]G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.
[31]N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429.
[32]E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.
[33]L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.
[34]I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.
[35]E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.
[36]M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.
[37]M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.
[38]B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.
[39]N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.
[40]K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.
[41]H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.
[42]S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.
[43]L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.
[44]H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.
[45]D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.
[46]K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.
[47]J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.
[48]L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.
[49]L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.
[50]E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).
[51]B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.
[52]G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.
[53]Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.
[54]G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.
[55]M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.
[56]M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.
[57]V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.
[58]M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.
[59]C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.
[60]J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.
[61]C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.
[62]N. del Olmo, L.M. Suárez, L.M. Orensanz, F. Suárez, J. Bustamante, J.M. Duarte, R. Martín del Río, J.M. Solís, Eur. J. Neurosci. 19 (2004) 1875–1886.
[63]K. Kuriyama, T. Hashimoto, in: S. Schaffer, J.B. Lombardini, R.J. Huxtable (Eds.), Taurine 3: Cellular and Regulatory Mechanisms, Springer US, Boston, MA, 1998, pp. 329–337.
[64]M.H. Bureau, R.W. Olsen, Eur. J. Pharmacol. 207 (1991) 9–16.
[65]P. Kontro, S.S. Oja, Neuropharmacology 29 (1990) 243–247.
[66]G. Caletti, F.B. Almeida, G. Agnes, M.S. Nin, H.M.T. Barros, R. Gomez, Behav. Brain Res. 283 (2015) 11–15.
[67]C.G. Zhang, S.-J. Kim, Ann. Nutr. Metab. 51 (2007) 379–386.
[68]Q. Wang, W. Fan, Y. Cai, Q. Wu, L. Mo, Z. Huang, H. Huang, Amino Acids 48 (2016) 2169–2177.
[69]W. Iio, N. Matsukawa, T. Tsukahara, A. Toyoda, Amino Acids 43 (2012) 2037–2046.
[70]G. Caletti, D.B. Olguins, E.F. Pedrollo, H.M.T. Barros, R. Gomez, Amino Acids 43 (2012) 1525–1533.
[71]A. Toyoda, W. Iio, Adv. Exp. Med. Biol. 775 (2013) 29–43.
[72]S.W. Chen, W.X. Kong, Y.J. Zhang, Y.L. Li, X.J. Mi, X.S. Mu, Life Sci. 75 (2004) 1503–1511.
[73]W.X. Kong, S.W. Chen, Y.L. Li, Y.J. Zhang, R. Wang, L. Min, X. Mi, Pharmacol. Biochem. Behav. 83 (2006) 271–276.
[74]M. Zhang, L.F. Bi, Y.D. Ai, L.P. Yang, H.B. Wang, Z.Y. Liu, M. Sekine, S. Kagamimori, Amino Acids 26 (2004) 59–63.
[75]Z. Jiang, S. Bulley, J. Guzzone, H. Ripps, W. Shen, Adv. Exp. Med. Biol. 775 (2013) 53–68.
[76]H. Pasantes-Morales, C. Cruz, Brain Res. 330 (1985) 154–157.
[77]W. Dayang, P. Dongbo, Cutan. Ocul. Toxicol. 37 (2018) 240–244.
[78]W. Dayang, P. Dongbo, Cutan. Ocul. Toxicol. 37 (2018) 90–95.
[79]Y. Tao, M. He, Q. Yang, Z. Ma, Y. Qu, W. Chen, G. Peng, D. Teng, Drug Des. Devel. Ther. 13 (2019) 2689–2702.
[80]Y. Fan, J. Lai, Y. Yuan, L. Wang, Q. Wang, F. Yuan, Curr. Eye Res. 45 (2020) 52–63.
[81]A.J.A. Jafri, R. Agarwal, I. Iezhitsa, P. Agarwal, N.M. Ismail, Amino Acids 51 (2019) 641–646.
[82]N.N. Nor Arfuzir, R. Agarwal, I. Iezhitsa, P. Agarwal, S. Sidek, N.M. Ismail, Neural Regeneration Res. 13 (2018) 2014–2021.
[83]N. Froger, F. Jammoul, D. Gaucher, L. Cadetti, H. Lorach, J. Degardin, D. Pain, E. Dubus, V. Forster, I. Ivkovic, M. Simonutti, J.-A. Sahel, S. Picaud, Adv. Exp. Med. Biol. 775 (2013) 69–83.
[84]N. Froger, L. Cadetti, H. Lorach, J. Martins, A.-P. Bemelmans, E. Dubus, J. Degardin, D. Pain, V. Forster, L. Chicaud, I. Ivkovic, M. Simonutti, S. Fouquet, F. Jammoul, T. Léveillard, R. Benosman, J.-A. Sahel, S. Picaud, PLoS One 7 (2012) e42017.
[85]K. Zeng, H. Xu, M. Mi, K. Chen, J. Zhu, L. Yi, T. Zhang, Q. Zhang, X. Yu, Neurochem. Res. 35 (2010) 1566–1574.
[86]X. Yu, Z. Xu, M. Mi, H. Xu, J. Zhu, N. Wei, K. Chen, Q. Zhang, K. Zeng, J. Wang, F. Chen, Y. Tang, Neurochem. Res. 33 (2008) 500–507.
[87]X. Yu, K. Chen, N. Wei, Q. Zhang, J. Liu, M. Mi, Br. J. Nutr. 98 (2007) 711–719.
[88]W. Hadj-Saïd, V. Fradot, I. Ivkovic, J.-A. Sahel, S. Picaud, N. Froger, Adv. Exp. Med. Biol. 975 Pt 2 (2017) 687–701.
[89]M.A.S. Di Leo, S.A. Santini, S. Cercone, D. Lepore, N. Gentiloni Silveri, S. Caputo, A.V. Greco, B. Giardina, F. Franconi, G. Ghirlanda, Amino Acids 23 (2002) 401–406.
[90]C.J. Jong, J. Azuma, S. Schaffer, Amino Acids 42 (2012) 2223–2232.
[91]S.W. Schaffer, J. Azuma, M. Mozaffari, Can. J. Physiol. Pharmacol. 87 (2009) 91–99.
[92]A.T.A. Nandhini, V. Thirunavukkarasu, M.K. Ravichandran, C.V. Anuradha, Singapore Med. J. 46 (2005) 82–87.
[93]P.S. Devamanoharan, A.H. Ali, S.D. Varma, Free Radic. Res. 29 (1998) 189–195.
[94]G. Guz, E. Oz, N. Lortlar, N.N. Ulusu, N. Nurlu, B. Demirogullari, S. Omeroglu, S. Sert, C. Karasu, Amino Acids 32 (2007) 405–411.
[95]H. Tabassum, S. Parvez, H. Rehman, B. Dev Banerjee, D. Siemen, S. Raisuddin, Hum. Exp. Toxicol. 26 (2007) 509–518.
[96]J. Hanna, R. Chahine, G. Aftimos, M. Nader, A. Mounayar, F. Esseily, S. Chamat, Exp. Toxicol. Pathol. 56 (2004) 189–194.
[97]R. Kingston, C.J. Kelly, P. Murray, Curr. Pharm. Des. 10 (2004) 2401–2410.
[98]M.A. Moloney, R.G. Casey, D.H. O’Donnell, P. Fitzgerald, C. Thompson, D.J. Bouchier-Hayes, Diab. Vasc. Dis. Res. 7 (2010) 300–310.
[99]S.-G. Ra, Y. Choi, N. Akazawa, K. Kawanaka, H. Ohmori, S. Maeda, Adv. Exp. Med. Biol. 1155 (2019) 407–414.
[100]Q. Sun, B. Wang, Y. Li, F. Sun, P. Li, W. Xia, X. Zhou, Q. Li, X. Wang, J. Chen, X. Zeng, Z. Zhao, H. He, D. Liu, Z. Zhu, Hypertension 67 (2016) 541–549.