Magnesium aspartate is a magnesium salt of aspartic acid. Magnesium is one of the most abundant minerals in the body and plays a vital role in supporting the function of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with ATP, so all enzymes utilizing ATP require magnesium to support their activity. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in promoting healthy glucose metabolism (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), it’s necessary for muscle and nerve function. Magnesium aspartate is magnesium complexed with aspartate to support its bioavailability. Aspartate is the ionic form of aspartic acid, an amino acid used in the synthesis of proteins in the human body and a metabolite in several biochemical pathways in cells, including the Krebs cycle central to cellular energy production. Magnesium aspartate has been used in several clinical studies for different purposes, most notably for supporting healthy hearing and noise protection [1–3].*
Supports sleep*
Supports cardiovascular function*
Supports mood*
Supports musculoskeletal health*
Supports cellular health*
Magnesium Aspartate is a non-GMO, gluten-free, and vegan ingredient.
The Recommended Dietary Allowances (RDA) for magnesium in adults varies from 310 to 420 depending upon age and gender. Magnesium is one of the most common dietary insufficiencies—a majority of Americans of all ages ingest less magnesium from food than the recommended amount. The established upper limit (UL) of magnesium from supplements has been set at 350 mg for adults, which is lower than the RDA for some age groups and genders (this is in recognition that even diets poor in magnesium contribute some towards the RDA). Supplying even a modest amount of supplemental magnesium can help close this nutritional gap for most people [4]. The amount of magnesium, as magnesium aspartate alone or combined with other forms of magnesium, in a Qualia formula can vary depending on the role of magnesium in the formula and the formula’s intended health purpose. A serving size of a Qualia product may contain an amount of magnesium we intend to augment dietary intake (e.g., 8-20% of the RDA) or the full 350 mg UL amount.*
Supports optimal metabolism and energy generation*
Supports the synthesis of ATP by ATP synthase in mitochondria* [5,6]
Part of a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes* [7]
Supports the activity of rate-limiting enzymes involved in carbohydrate and lipid metabolism* [7,8]
Supports the activity of rate-limiting enzymes involved protein and nucleic acid synthesis* [7,8]
Helps maintain healthy insulin sensitivity* [9,10]
Supports cell signaling*
Supports healthy cellular sodium and potassium influx and efflux* [7]
Supports healthy cellular calcium influx and balanced calcium signaling* [7,8]
Supports the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis* [11]
Supports cell structure*
Maintains stability of proteins, nucleic acids, chromosomes, and biological membranes* [7]
Supports healthy cardiovascular function*
Supports healthy cardiac muscle contraction and heart rhythm* [8,12]
Supports healthy vascular tone* [8,12]
Supports healthy platelet function* [8,13]
Supports brain function*
Supports hearing* [1–3,14–17]
Supports healthy neurotransmitter signaling and optimal neurological function* [8]
Supports the healthy activity of the glutamate N-methyl-D-aspartate (NMDA) receptor* [18,19]
Supports healthy glutamate dehydrogenase (GDH) enzyme function that converts glutamate to α-ketoglutarate, and vice versa* [20,21]
Supports healthy serotonin N-acetyltransferase function - an enzyme that is involved in the day/night rhythmic production of melatonin from serotonin* [22,23]
Supports healthy brain-derived neurotrophic factor (BDNF) function* [19,24,25]
Supports healthy neural stem cell proliferation* [26]
Supports healthy brain mitochondrial function* [26]
Supports a healthy mood*
Supports mental well-being* [27,28]
Supports healthy behavioral and physiological responses to stress* [25,29–32]
Supports sleep*
Supports optimal sleep quality* [33–36]
Supports healthy EEG and neuroendocrine responses during sleep* [37,38]
Supports sleep organization and regulation* [39–42]
Supports exercise tolerance in contexts of poor sleep* [43]
Supports muscle function*
Supports healthy muscle contraction* [8,44]
Supports optimal muscle strength* [45,46]
Supports the skeletal system*
Supports healthy bone metabolism/remodeling and optimal calcium absorption* [7]
Supports healthy calcitonin and parathyroid hormone activity* [7]
Supports optimal bone formation* [7]
Supports a healthy gut microbiota*
Supports a healthy composition of the gut microbiota* [47–49]
Complementary ingredients*
Commonly supplemented with calcium for bone support*
Supports vitamin D metabolism* [50]
B-complex vitamins and melatonin supplementation for sleep support* [51]
Zinc and melatonin supplementation for sleep support* [52]
Vitamin B6 for mood support* [53,54]
Hawthorn and California poppy for mood support* [55]
Antioxidant vitamins for hearing support* [56–58]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
[1]B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.
[2]J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.
[3]J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.
[4](n.d.).
[5]Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.
[6]A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.
[7]S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.
[8]W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.
[9]M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.
[10]M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.
[11]S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.
[12]B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.
[13]M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.
[14]Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.
[15]F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.
[16]A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.
[17]M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.
[18]J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.
[19]N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.
[20]L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.
[21]B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.
[22]D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.
[23]A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.
[24]B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.
[25]J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.
[26]S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.
[27]G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.
[28]N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429.
[29]E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.
[30]L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.
[31]I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.
[32]E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.
[33]M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.
[34]M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.
[35]B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.
[36]N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.
[37]K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.
[38]H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.
[39]S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.
[40]L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.
[41]H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.
[42]D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.
[43]K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.
[44]J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.
[45]L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.
[46]L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.
[47]E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).
[48]B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.
[49]G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.
[50]Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.
[51]G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.
[52]M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.
[53]M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.
[54]V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.
[55]M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.
[56]C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.
[57]J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.
[58]C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.