Magnesium bisglycinate chelate is the mineral magnesium bound to two glycine molecules to support its bioavailability—the “bis” in bisglycinate comes from the Latin word for “twice.” Bisglycinate and glycinate are often used interchangeably, but magnesium bisglycinate is the more accurate chemical name, whereas magnesium glycinate is the common name. Both magnesium and glycine are involved in supporting efficient cellular function. Magnesium is one of the most abundant minerals in the body and plays a vital role in supporting the function of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with magnesium, so all enzymes utilizing ATP require magnesium to support their activity. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in promoting healthy glucose metabolism (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), it’s necessary for muscle and nerve function. Glycine was discovered in the early 1800’s. Its name comes from the Greek word for sweet, because glycine has a sweet taste similar to sugar. Glycine is a conditional amino acid. While we can make glycine inside the body (i.e., it’s non-essential), there are circumstances where the amount we make and what we get in the diet appear to be insufficient to optimize functional health. Glycine is used to make many proteins in the body. An example is glutathione, which functions as part of cellular antioxidant defenses and detoxification. Glycine is also used in the brain as a neurotransmitter and throughout the body to make collagen. Magnesium bisglycinate is used when there’s a role for both magnesium and glycine in the formula. It’s most commonly thought of as a form of magnesium that lends support for brain health, mood, and sleep.*
Supports sleep*
Supports mood*
Supports musculoskeletal health*
Supports cellular health*
Magnesium bisglycinate chelate is sourced from Albion® Minerals, a world leader in chelated minerals.
Magnesium bisglycinate chelate is a non-GMO, gluten-free, and vegan ingredient.
The Recommended Dietary Allowances (RDA) for magnesium in adults varies from 310 to 420 depending upon age and gender. Magnesium is one of the most common dietary insufficiencies—a majority of Americans of all ages ingest less magnesium from food than the recommended amount. The established upper limit (UL) of magnesium from supplements has been set at 350 mg for adults, which is lower than the RDA for some age groups and genders (this is in recognition that even diets poor in magnesium contribute some towards the RDA). Supplying even a modest amount of supplemental magnesium can help close this nutritional gap for most people [1]. The amount of magnesium, as magnesium bisglycinate chelate alone or combined with other forms of magnesium, in a Qualia formula can vary depending on the role of magnesium in the formula and the formula’s intended health purpose. A serving size of a Qualia product may contain an amount of magnesium we intend to augment dietary intake (e.g., 8-20% of the RDA) or the full 350 mg UL amount.*
Supports the synthesis of ATP by ATP synthase in mitochondria* [2,3]
Part of a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes* [4]
Supports the activity of rate-limiting enzymes involved in carbohydrate and lipid metabolism* [4,5]
Supports the activity of rate-limiting enzymes involved protein and nucleic acid synthesis* [4,5]
Helps maintain healthy insulin sensitivity* [6,7]
Supports healthy cellular sodium and potassium influx and efflux* [4]
Supports healthy cellular calcium influx and balanced calcium signaling* [4,5]
Supports the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis* [8]
Maintains stability of proteins, nucleic acids, chromosomes, and biological membranes* [4]
Supports healthy cardiac muscle contraction and heart rhythm* [5,9]
Supports healthy vascular tone* [5,9]
Supports healthy platelet function* [5,10]
Supports hearing* [11–17]
Supports healthy neurotransmitter signaling and optimal neurological function* [5]
Supports the healthy activity of the glutamate N-methyl-D-aspartate (NMDA) receptor* [18,19]
Supports healthy glutamate dehydrogenase (GDH) enzyme function that converts glutamate to α-ketoglutarate, and vice versa* [20,21]
Supports healthy serotonin N-acetyltransferase function - an enzyme that is involved in the day/night rhythmic production of melatonin from serotonin* [22,23]
Supports healthy brain-derived neurotrophic factor (BDNF) function* [19,24,25]
Supports healthy neural stem cell proliferation* [26]
Supports healthy brain mitochondrial function* [26]
Supports mental well-being* [27,28]
Supports healthy behavioral and physiological responses to stress* [25,29–32]
Supports optimal sleep quality* [33–36]
Supports healthy EEG and neuroendocrine responses during sleep* [37,38]
Supports sleep organization and regulation* [39–42]
Supports exercise tolerance in contexts of poor sleep* [43]
Supports healthy muscle contraction* [5,44]
Supports optimal muscle strength* [45,46]
Supports healthy bone metabolism/remodeling and optimal calcium absorption* [4]
Supports healthy calcitonin and parathyroid hormone activity* [4]
Supports optimal bone formation* [4]
Supports a healthy composition of the gut microbiota* [47–49]
Commonly supplemented with calcium for bone support*
Supports vitamin D metabolism* [50]
B-complex vitamins and melatonin supplementation for sleep support* [51]
Zinc and melatonin supplementation for sleep support* [52]
Vitamin B6 for mood support* [53,54]
Hawthorn and California poppy for mood support* [55]
Antioxidant vitamins for hearing support* [56–58]
Plays an essential role in protein synthesis, especially collagen synthesis* [59]
Provides flexibility to active sites in many enzymes* [60]
Supports cell membrane function to promote balanced immune responses* [61]
Precursor for synthesis of glutathione* [62–64]
Precursor for synthesis of creatine* [65]
Precursor for synthesis of porphyrins and heme* [66]
Precursor for synthesis of purines* [67]
Acts as a neurotransmitter (i.e., has its own neurotransmission system)* [68–71]
Supports healthy glutaminergic neurotransmission* [72]
Supports serotonergic neurotransmission* [73]
Supports sleep quality* [74,75]
Helps resist daytime sleepiness and fatigue; improves vigilance* [74–76]
Supports metabolism of glycation end products (i.e., sugar-protein cross links)* [77–80]
Supports growth hormone secretion* [81]
N-Acetyl-Cysteine (NAC) for glutathione synthesis* [82–84]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.
REFERENCES
[1](n.d.).
[2]Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.
[3]A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.
[4]S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.
[5]W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.
[6]M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.
[7]M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.
[8]S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.
[9]B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.
[10]M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.
[11]Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.
[12]J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.
[13]F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.
[14]A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.
[15]B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.
[16]J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.
[17]M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.
[18]J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.
[19]N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.
[20]L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.
[21]B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.
[22]D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.
[23]A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.
[24]B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.
[25]J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.
[26]S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.
[27]G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.
[28]N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429."
[29]E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.
[30]L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.
[31]I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.
[32]E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.
[33]M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.
[34]M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.
[35]B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.
[36]N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.
[37]K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.
[38]H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.
[39]S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.
[40]L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.
[41]H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.
[42]D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.
[43]K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.
[44]J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.
[45]L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.
[46]L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.
[47]E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).
[48]B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.
[49]G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.
[50]Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.
[51]G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.
[52]M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.
[53]M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.
[54]V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.
[55]M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.
[56]C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.
[57]J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.
[58]C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.
[59]M.D. Shoulders, R.T. Raines, Annu. Rev. Biochem. 78 (2009) 929–958.
[60]B.X. Yan, Y.Q. Sun, J. Biol. Chem. 272 (1997) 3190–3194.
[61]Z. Zhong, M.D. Wheeler, X. Li, M. Froh, P. Schemmer, M. Yin, H. Bunzendaul, B. Bradford, J.J. Lemasters, Curr. Opin. Clin. Nutr. Metab. Care 6 (2003) 229–240.
[62]S.C. Lu, Biochim. Biophys. Acta 1830 (2013) 3143–3153.
[63]A. Ruiz-Ramírez, E. Ortiz-Balderas, G. Cardozo-Saldaña, E. Diaz-Diaz, M. El-Hafidi, Clin. Sci. 126 (2014) 19–29.
[64]M.F. McCarty, J.H. O’Keefe, J.J. DiNicolantonio, Ochsner J. 18 (2018) 81–87.
[65]J.T. Brosnan, R.P. da Silva, M.E. Brosnan, Amino Acids 40 (2011) 1325–1331.
[66]G. Layer, J. Reichelt, D. Jahn, D.W. Heinz, Protein Sci. 19 (2010) 1137–1161.
[67]J.M. Berg, T.J. Tymoczko, L. Stryer, Biochemistry. New York: WH Freeman (2002).
[68]J.W. Johnson, P. Ascher, Nature 325 (1987) 529–531.
[69]H. Betz, B. Laube, J. Neurochem. 97 (2006) 1600–1610.
[70]F. Zafra, C. Giménez, IUBMB Life 60 (2008) 810–817.
[71]A.A. Ghavanini, D.A. Mathers, H.-S. Kim, E. Puil, J. Neurophysiol. 95 (2006) 3438–3448.
[72]S.F. Traynelis, L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, R. Dingledine, Pharmacol. Rev. 62 (2010) 405–496.
[73]M. Bannai, N. Kawai, K. Nagao, S. Nakano, D. Matsuzawa, E. Shimizu, Psychiatry Clin. Neurosci. 65 (2011) 142–149.
[74]W. Yamadera, K. Inagawa, S. Chiba, M. Bannai, M. Takahashi, K. Nakayama, Sleep Biol. Rhythms 5 (2007) 126–131.
[75]M. Bannai, N. Kawai, K. Ono, K. Nakahara, N. Murakami, Front. Neurol. 3 (2012) 61.
[76]K. Inagawa, T. Hiraoka, T. Kohda, W. Yamadera, M. Takahashi, Sleep Biol. Rhythms 4 (2006) 75–77.
[77]S. Ramakrishnan, K.N. Sulochana, Exp. Eye Res. 57 (1993) 623–628.
[78]S. Ramakrishnan, K.N. Sulochana, R. Punitham, Indian J. Biochem. Biophys. 34 (1997) 518–523.
[79]M. Cruz, C. Maldonado-Bernal, R. Mondragón-Gonzalez, R. Sanchez-Barrera, N.H. Wacher, G. Carvajal-Sandoval, J. Kumate, J. Endocrinol. Invest. 31 (2008) 694–699.
[80]F. Bahmani, S.Z. Bathaie, S.J. Aldavood, A. Ghahghaei, Mol. Vis. 18 (2012) 439–448.
[81]K. Kasai, M. Kobayashi, S.I. Shimoda, Metabolism 27 (1978) 201–208.
[82]S. Xie, L. Tian, J. Niu, G. Liang, Y. Liu, Fish Physiology and Biochemistry 43 (2017) 1011–1020.
[83]K.A. Cieslik, R.V. Sekhar, A. Granillo, A. Reddy, G. Medrano, C.P. Heredia, M.L. Entman, D.J. Hamilton, S. Li, E. Reineke, A.A. Gupte, A. Zhang, G.E. Taffet, J. Gerontol. A Biol. Sci. Med. Sci. 73 (2018) 1167–1177.
[84]S. Xie, W. Zhou, L. Tian, J. Niu, Y. Liu, Fish Shellfish Immunol. 55 (2016) 233–241.