Magnesium Creatine Chelate

Magnesium Creatine Chelate is magnesium salt of creatine, with each magnesium ion bound to two creatine molecules. Magnesium is one of the most abundant minerals in the body and plays a vital role in supporting the function of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with magnesium, so all enzymes utilizing ATP require magnesium to support their activity. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in promoting healthy glucose metabolism (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), it’s necessary for muscle and nerve function. Creatine plays a key role in tissues that use high amounts of energy, like muscles and the brain. Creatine is used in the phosphocreatine (phosphagen) system. This system regenerates ATP from ADP in tissues, and is especially important in circumstances with high energy demand. Because of this role, creatine is often described as an ATP “buffer.” Magnesium Creatine Chelate has been used in clinical studies for the support of exercise performance [1,2].*

TOP BENEFITS OF MAGNESIUM CREATINE CHELATE

Supports sleep*

Supports cardiovascular function*

Supports mood*

Supports musculoskeletal health*

Supports cellular health*

QUALIA’S MAGNESIUM CREATINE CHELATE SOURCING

Magnesium Creatine Chelate is sourced from Albion® Minerals, a world leader in chelated minerals.

Magnesium Creatine Chelate is a non-GMO, gluten-free, and vegan ingredient.

MAGNESIUM CREATINE CHELATE FORMULATING PRINCIPLES AND RATIONALE

The Recommended Dietary Allowances (RDA) for magnesium in adults varies from 310 to 420 depending upon age and gender. Magnesium is one of the most common dietary insufficiencies—a majority of Americans of all ages ingest less magnesium from food than the recommended amount. The established upper limit (UL) of magnesium from supplements has been set at 350 mg for adults, which is lower than the RDA for some age groups and genders (this is in recognition that even diets poor in magnesium contribute some towards the RDA). Supplying even a modest amount of supplemental magnesium can help close this nutritional gap for most people [3]. The amount of magnesium, as magnesium creatine chelate alone or combined with other forms of magnesium, in a Qualia formula can vary depending on the role of magnesium in the formula and the formula’s intended health purpose. A serving size of a Qualia product may contain an amount of magnesium we intend to augment dietary intake (e.g., 8-20% of the RDA) or the full 350 mg UL amount.*

MAGNESIUM KEY MECHANISMS

Supports optimal metabolism and energy generation*

Supports the synthesis of ATP by ATP synthase in mitochondria* [4,5]

Part of a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes* [6]

Supports the activity of rate-limiting enzymes involved in carbohydrate and lipid metabolism* [6,7]

Supports the activity of rate-limiting enzymes involved protein and nucleic acid synthesis* [6,7]

Helps maintain healthy insulin sensitivity* [8,9]

Supports cell signaling*

Supports healthy cellular sodium and potassium influx and efflux* [6]

Supports  healthy cellular calcium influx and balanced calcium signaling* [6,7]

Supports the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis* [10]

Supports cell structure*

Maintains stability of proteins, nucleic acids, chromosomes, and biological membranes* [6]

Supports healthy cardiovascular function*

Supports healthy cardiac muscle contraction and heart rhythm* [7,11]

Supports healthy vascular tone* [7,11]

Supports healthy platelet function* [7,12]

Supports brain function*

Supports hearing* [13–19]

Supports healthy neurotransmitter signaling  and optimal neurological function* [7]

Supports the healthy activity of the glutamate N-methyl-D-aspartate (NMDA) receptor* [20,21]

Supports healthy glutamate dehydrogenase (GDH) enzyme function that converts glutamate to α-ketoglutarate, and vice versa* [22,23]

Supports healthy serotonin N-acetyltransferase function - an enzyme that is involved in the day/night rhythmic production of melatonin from serotonin* [24,25]

Supports healthy brain-derived neurotrophic factor (BDNF) function* [21,26,27]

Supports healthy neural stem cell proliferation* [28]

Supports healthy brain mitochondrial function* [28]

Supports a healthy mood*

Supports mental well-being* [29,30] 

Supports healthy behavioral and physiological responses to stress* [27,31–34] 

Supports sleep* 

Supports optimal sleep quality* [35–38]

Supports healthy EEG and neuroendocrine responses during sleep* [39,40]

Supports sleep organization and regulation* [41–44]

Supports exercise tolerance in contexts of poor sleep* [45]

Supports muscle function*

Supports healthy muscle contraction* [7,46]

Supports optimal muscle strength* [47,48]

Supports the skeletal system*

Supports healthy bone metabolism/remodeling and optimal calcium absorption* [6]

Supports healthy calcitonin and parathyroid hormone activity* [6]

Supports optimal bone formation* [6]

Supports a healthy gut microbiota*

Supports a healthy composition of the gut microbiota* [49–51]

Complementary ingredients*

Commonly supplemented with calcium for bone support* 

Supports vitamin D metabolism* [52]

B-complex vitamins and melatonin supplementation for sleep support* [53]

Zinc and melatonin supplementation for sleep support* [54]

Vitamin B6 for mood support* [55,56]

Hawthorn and California poppy for mood support* [57]

Antioxidant vitamins for hearing support* [58–60]

CREATINE KEY MECHANISMS

Supports mitochondrial structure and function*

Supports transcription factors associated with mitochondrial biogenesis (PGC-1α,  TFAM)* [61]

Supports healthy mitochondrial structure and function* [61–63]

Supports mitochondrial DNA (mtDNA)* [61]

Supports mitochondrial membrane potential* [61,62]

Promotes exercise performance*

Supports the muscle pool of phosphocreatine to be used for ATP regeneration* [64–69]

Supports strength performance* [66–68,70–75]

Supports lean mass* [68,70–75]

Supports muscle structure and function* [66–68,70]

Supports energy generation in cardiac muscle* [76]

Other actions*

Supports AMP-activated protein kinase (AMPK) signaling* [61,64,77–79]

Supports neuroprotective functions* [62,63,80–83]

*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, treat, cure, or prevent any disease.

REFERENCES
[1]J.T. Selsby, R.A. DiSilvestro, S.T. Devor, J. Strength Cond. Res. 18 (2004) 311–315.
[2]A. Zajac, A. Golas, J. Chycki, M. Halz, M.M. Michalczyk, Nutrients 12 (2020).
[3](n.d.).
[4]Y.H. Ko, S. Hong, P.L. Pedersen, J. Biol. Chem. 274 (1999) 28853–28856.
[5]A.U. Igamberdiev, L.A. Kleczkowski, Front. Plant Sci. 6 (2015) 10.
[6]S.-M. Glasdam, S. Glasdam, G.H. Peters, Adv. Clin. Chem. 73 (2016) 169–193.
[7]W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5 (2012) i3–i14.
[8]M. Barbagallo, L.J. Dominguez, Arch. Biochem. Biophys. 458 (2007) 40–47.
[9]M. de L. Lima, T. Cruz, L.E. Rodrigues, O. Bomfim, J. Melo, R. Correia, M. Porto, A. Cedro, E. Vicente, Diabetes Res. Clin. Pract. 83 (2009) 257–262.
[10]S.Y. Cech, W.C. Broaddus, M.E. Maguire, Mol. Cell. Biochem. 33 (1980) 67–92.
[11]B.M. Altura, B.T. Altura, Magnesium 4 (1985) 226–244.
[12]M. Shechter, C.N. Merz, M. Paul-Labrador, S.R. Meisel, R.K. Rude, M.D. Molloy, J.H. Dwyer, P.K. Shah, S. Kaul, Am. J. Cardiol. 84 (1999) 152–156.
[13]Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, J. Attias, G. Weisz, T. Günther, Schriftenr. Ver. Wasser Boden Lufthyg. 88 (1993) 503–516.
[14]J. Attias, G. Weisz, S. Almog, A. Shahar, M. Wiener, Z. Joachims, A. Netzer, H. Ising, E. Rebentisch, T. Guenther, Am. J. Otolaryngol. 15 (1994) 26–32.
[15]F. Scheibe, H. Haupt, B. Mazurek, O. König, Noise Health 3 (2001) 79–84.
[16]A. Gordin, D. Goldenberg, A. Golz, A. Netzer, H.Z. Joachims, Otol. Neurotol. 23 (2002) 447–451.
[17]B.I. Nageris, D. Ulanovski, J. Attias, Ann. Otol. Rhinol. Laryngol. 113 (2004) 672–675.
[18]J. Attias, S. Sapir, I. Bresloff, I. Reshef-Haran, H. Ising, Clin. Otolaryngol. Allied Sci. 29 (2004) 635–641.
[19]M.J. Cevette, D.M. Barrs, A. Patel, K.P. Conroy, S. Sydlowski, B.N. Noble, G.A. Nelson, J. Stepanek, Int. Tinnitus J. 16 (2011) 168–173.
[20]J.P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience 6 (1994) 87–96.
[21]N. Abumaria, B. Yin, L. Zhang, X.-Y. Li, T. Chen, G. Descalzi, L. Zhao, M. Ahn, L. Luo, C. Ran, M. Zhuo, G. Liu, J. Neurosci. 31 (2011) 14871–14881.
[22]L.A. Fahien, J.K. Teller, M.J. Macdonald, C.M. Fahien, Mol. Pharmacol. 37 (1990) 943–949.
[23]B. Pochwat, G. Nowak, B. Szewczyk, Pharmacol. Rep. 68 (2016) 881–885.
[24]D.J. Morton, M.F. James, J. Pineal Res. 2 (1985) 387–391.
[25]A.J. Billyard, D.L. Eggett, K.B. Franz, Magnes. Res. 19 (2006) 157–161.
[26]B. Pochwat, M. Sowa-Kucma, K. Kotarska, P. Misztak, G. Nowak, B. Szewczyk, Psychopharmacology 232 (2015) 355–367.
[27]J. Petrović, D. Stanić, Z. Bulat, N. Puškaš, M. Labudović-Borović, B. Batinić, D. Mirković, S. Ignjatović, V. Pešić, Horm. Behav. 105 (2018) 1–10.
[28]S. Jia, C. Mou, Y. Ma, R. Han, X. Li, Cell Biol. Int. 40 (2016) 465–471.
[29]G.A. Eby, K.L. Eby, Med. Hypotheses 67 (2006) 362–370.
[30]N.B. Boyle, C. Lawton, L. Dye, Nutrients 9 (2017) 429.
[31]E. Poleszak, B. Szewczyk, E. Kedzierska, P. Wlaź, A. Pilc, G. Nowak, Pharmacol. Biochem. Behav. 78 (2004) 7–12.
[32]L. Fromm, D.L. Heath, R. Vink, A.J. Nimmo, J. Am. Coll. Nutr. 23 (2004) 529S–533S.
[33]I.N. Iezhitsa, A.A. Spasov, M.V. Kharitonova, M.S. Kravchenko, Nutr. Neurosci. 14 (2011) 10–24.
[34]E. Poleszak, Pharmacol. Rep. 60 (2008) 483–489.
[35]M. Hornyak, U. Voderholzer, F. Hohagen, M. Berger, D. Riemann, Sleep 21 (1998) 501–505.
[36]M. Hornyak, P. Haas, J. Veit, H. Gann, D. Riemann, Alcohol. Clin. Exp. Res. 28 (2004) 1702–1709.
[37]B. Abbasi, M. Kimiagar, K. Sadeghniiat, M.M. Shirazi, M. Hedayati, B. Rashidkhani, J. Res. Med. Sci. 17 (2012) 1161–1169.
[38]N.R. Maor, M. Alperin, E. Shturman, H. Khairaldeen, M. Friedman, K. Karkabi, U. Milman, JAMA Intern. Med. 177 (2017) 617–623.
[39]K. Held, I.A. Antonijevic, H. Künzel, M. Uhr, T.C. Wetter, I.C. Golly, A. Steiger, H. Murck, Pharmacopsychiatry 35 (2002) 135–143.
[40]H. Murck, A. Steiger, Psychopharmacology 137 (1998) 247–252.
[41]S. Poenaru, S. Rouhani, J. Durlach, N. Aymard, F. Belkahla, Y. Rayssiguier, M. Iovino, Magnesium 3 (1984) 145–151.
[42]L. Popoviciu, D. Delast-Popoviciu, R. Delast-Popoviciu, I. Bagathai, G. Bicher, C. Buksa, S. Covaciu, E. Szalay, Rom. J. Neurol. Psychiatry 28 (1990) 19–24.
[43]H. Depoortere, D. Françon, J. Llopis, Neuropsychobiology 27 (1993) 237–245.
[44]D. Chollet, P. Franken, Y. Raffin, J.G. Henrotte, J. Widmer, A. Malafosse, M. Tafti, Behav. Genet. 31 (2001) 413–425.
[45]K. Tanabe, A. Yamamoto, N. Suzuki, N. Osada, Y. Yokoyama, H. Samejima, A. Seki, M. Oya, T. Murabayashi, M. Nakayama, M. Yamamoto, K. Omiya, H. Itoh, M. Murayama, Japanese Circulation Journal 62 (1998) 341–346.
[46]J.D. Potter, S.P. Robertson, J.D. Johnson, Fed. Proc. 40 (1981) 2653–2656.
[47]L.R. Brilla, T.F. Haley, J. Am. Coll. Nutr. 11 (1992) 326–329.
[48]L.J. Dominguez, M. Barbagallo, F. Lauretani, S. Bandinelli, A. Bos, A.M. Corsi, E.M. Simonsick, L. Ferrucci, Am. J. Clin. Nutr. 84 (2006) 419–426.
[49]E.K. Crowley, C.M. Long-Smith, A. Murphy, E. Patterson, K. Murphy, D.M. O’Gorman, C. Stanton, Y.M. Nolan, Mar. Drugs 16 (2018).
[50]B. Pyndt Jørgensen, G. Winther, P. Kihl, D.S. Nielsen, G. Wegener, A.K. Hansen, D.B. Sørensen, Acta Neuropsychiatr. 27 (2015) 307–311.
[51]G. Winther, B.M. Pyndt Jørgensen, B. Elfving, D.S. Nielsen, P. Kihl, S. Lund, D.B. Sørensen, G. Wegener, Acta Neuropsychiatr. 27 (2015) 168–176.
[52]Q. Dai, M.J. Shrubsole, R.M. Ness, D. Schlundt, Q. Cai, W.E. Smalley, M. Li, Y. Shyr, W. Zheng, Am. J. Clin. Nutr. 86 (2007) 743–751.
[53]G. Djokic, P. Vojvodic, D. Korcok, A. Agic, A. Rankovic, V. Djordjevic, A. Vojvodic, T. Vlaskovic-Jovicevic, Z. Peric-Hajzler, J. Vojvodic, D. Matovic, G. Sijan, U. Wollina, M. Tirant, V.T. Nguyen, M. Fioranelli, T. Lotti, Open Access Macedonian Journal of Medical Sciences 7 (2019) 3101–3105.
[54]M. Rondanelli, A. Opizzi, F. Monteferrario, N. Antoniello, R. Manni, C. Klersy, Journal of the American Geriatrics Society 59 (2011) 82–90.
[55]M.C.D. Souza, M.C. De Souza, A.F. Walker, P.A. Robinson, K. Bolland, Journal of Women’s Health & Gender-Based Medicine 9 (2000) 131–139.
[56]V.V. Kalinin, E.V. Zheleznova, T.A. Rogacheva, L.V. Sokolova, D.A. Polianskiĭ, A.A. Zemlianaia, D.M. Nazmetdinova, Zh. Nevrol. Psikhiatr. Im. S S Korsakova 104 (2004) 51–55.
[57]M. Hanus, J. Lafon, M. Mathieu, Curr. Med. Res. Opin. 20 (2004) 63–71.
[58]C.G. Le Prell, L.F. Hughes, J.M. Miller, Free Radic. Biol. Med. 42 (2007) 1454–1463.
[59]J.C. Alvarado, V. Fuentes-Santamaría, M.C. Gabaldón-Ull, J.M. Juiz, Front. Neurosci. 12 (2018) 527.
[60]C.G. Le Prell, P.M. Gagnon, D.C. Bennett, K.K. Ohlemiller, Transl. Res. 158 (2011) 38–53.
[61]E. Barbieri, M. Guescini, C. Calcabrini, L. Vallorani, A.R. Diaz, C. Fimognari, B. Canonico, F. Luchetti, S. Papa, M. Battistelli, E. Falcieri, V. Romanello, M. Sandri, V. Stocchi, C. Ciacci, P. Sestili, Oxid. Med. Cell. Longev. 2016 (2016) 5152029.
[62]L.M. Rambo, L.R. Ribeiro, I.D. Della-Pace, D.N. Stamm, R. da Rosa Gerbatin, M. Prigol, S. Pinton, C.W. Nogueira, A.F. Furian, M.S. Oliveira, M.R. Fighera, L.F.F. Royes, Amino Acids 44 (2013) 857–868.
[63]P. Klivenyi, R.J. Ferrante, R.T. Matthews, M.B. Bogdanov, A.M. Klein, O.A. Andreassen, G. Mueller, M. Wermer, R. Kaddurah-Daouk, M.F. Beal, Nat. Med. 5 (1999) 347–350.
[64]R.B. Ceddia, G. Sweeney, J. Physiol. 555 (2004) 409–421.
[65]B. Banerjee, U. Sharma, K. Balasubramanian, M. Kalaivani, V. Kalra, N.R. Jagannathan, Magn. Reson. Imaging 28 (2010) 698–707.
[66]B. Gualano, V. DE Salles Painneli, H. Roschel, G.G. Artioli, M. Neves Jr, A.L. De Sá Pinto, M.E.R. Da Silva, M.R. Cunha, M.C.G. Otaduy, C.D.C. Leite, J.C. Ferreira, R.M. Pereira, P.C. Brum, E. Bonfá, A.H. Lancha Jr, Med. Sci. Sports Exerc. 43 (2011) 770–778.
[67]C.R.R. Alves, B.M. Santiago, F.R. Lima, M.C.G. Otaduy, A.L. Calich, A.C.C. Tritto, A.L. de Sá Pinto, H. Roschel, C.C. Leite, F.B. Benatti, E. Bonfá, B. Gualano, Arthritis Care Res. 65 (2013) 1449–1459.
[68]D.G. Burke, P.D. Chilibeck, G. Parise, D.G. Candow, D. Mahoney, M. Tarnopolsky, Med. Sci. Sports Exerc. 35 (2003) 1946–1955.
[69]J.T. Brosnan, M.E. Brosnan, Annu. Rev. Nutr. 27 (2007) 241–261.
[70]J.S. Volek, N.D. Duncan, S.A. Mazzetti, R.S. Staron, M. Putukian, A.L. Gómez, D.R. Pearson, W.J. Fink, W.J. Kraemer, Med. Sci. Sports Exerc. 31 (1999) 1147–1156.
[71]S.L. Nissen, R.L. Sharp, J. Appl. Physiol. 94 (2003) 651–659.
[72]R.B. Kreider, Mol. Cell. Biochem. 244 (2003) 89–94.
[73]L.A. Gotshalk, W.J. Kraemer, M.A.G. Mendonca, J.L. Vingren, A.M. Kenny, B.A. Spiering, D.L. Hatfield, M.S. Fragala, J.S. Volek, Eur. J. Appl. Physiol. 102 (2008) 223–231.
[74]L.A. Gotshalk, J.S. Volek, R.S. Staron, C.R. Denegar, F.C. Hagerman, W.J. Kraemer, Med. Sci. Sports Exerc. 34 (2002) 537–543.
[75]J.D. Branch, Int. J. Sport Nutr. Exerc. Metab. 13 (2003) 198–226.
[76]V. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic, T. Wallimann, J. Physiol. 571 (2006) 253–273.
[77]L. Zhang, X. Wang, J. Li, X. Zhu, F. Gao, G. Zhou, J. Agric. Food Chem. 65 (2017) 6991–6999.
[78]C.R.R. Alves, J.C. Ferreira, M.A. de Siqueira-Filho, C.R. Carvalho, A.H. Lancha Jr, B. Gualano, Amino Acids 43 (2012) 1803–1807.
[79]J.-S. Ju, J.L. Smith, P.J. Oppelt, J.S. Fisher, Am. J. Physiol. Endocrinol. Metab. 288 (2005) E347–52.
[80]G.J. Brewer, T.W. Wallimann, J. Neurochem. 74 (2000) 1968–1978.
[81]B. Valastro, A. Dekundy, W. Danysz, G. Quack, Behav. Brain Res. 197 (2009) 90–96.
[82]R.T. Matthews, L. Yang, B.G. Jenkins, R.J. Ferrante, B.R. Rosen, R. Kaddurah-Daouk, M.F. Beal, J. Neurosci. 18 (1998) 156–163.
[83]P.G. Sullivan, J.D. Geiger, M.P. Mattson, S.W. Scheff, Ann. Neurol. 48 (2000) 723–729.