N-Acetyl-D-Glucosamine (Vegan)

N-Acetyl-D-Glucosamine (NAG, GlcNAc, N-acetylglucosamine) is a fermentable amino sugar (i.e., a nitrogen-containing sugar) shown to have several biological roles that support healthy gut-brain functions [1–3]. It is part of some of the complex molecules in connective tissue, myelin, human breast milk, and mucus. In breast milk and mucus, NAG can be thought of as having prebiotic-like functions; it is essential for building molecules used as food by some friendly bacteria. NAG-containing oligosaccharides were first identified more than 50 years ago as the 'bifidus factor' in human breast milk, supporting the growth of intestinal bifidobacteria [4]. The gut mucus layer is essential for maintaining intestinal health and barrier functions. NAG is a natural part of healthy mucus; it’s found in mucus and used to make some mucins (complex mucoprotein molecules found in mucus). Some of the beneficial bacteria that live in mucus rely on NAG and NAG-containing molecules [5].* 


TOP BENEFITS OF N-Acetyl-D-Glucosamine

Supports healthy gastrointestinal function*

Supports a healthy gut microbiota*


QUALIA’S N-Acetyl-D-Glucosamine SOURCING

N-Acetyl-D-Glucosamine (NAG) sourcing emphasis was to identify and purchase a vegan NAG (while most NAG is produced from crab and shrimp shells, ours is not produced from an animal source).

N-Acetyl-D-Glucosamine is a non-GMO, gluten-free, and vegan ingredient.


N-Acetyl-D-Glucosamine FORMULATION PRINCIPLES AND RATIONALE

NAG naturally plays important structure and function roles in the intestines and the gut mucosal barrier. One of these roles can be thought of as being prebiotic-like. While NAG isn’t currently recognized as a prebiotic, it supports the growth of butyrate-producing gut bacteria [6]. In fact, one of the next-generation gut microbiota organisms, a mucus-degrading specialist called Akkermansia muciniphila, requires NAG for its growth [7,8]. And other next-generation bacteria, including Faecalibacterium prausnitzii, can use NAG for growth [9].* Because Qualia Synbiotic was formulated to support next-generation gut bacteria, we included NAG. We chose a recommended serving of 250 mg because it is within the quantitative range of NAG studied as a supplement in humans [10,11] and because we expect this amount to complement the other prebiotic and prebiotic-like ingredients in Qualia Synbiotic.*


N-Acetyl-D-Glucosamine KEY MECHANISMS

Supports healthy gastrointestinal function and the gut microbiota*

Supports gastrointestinal health* [12,13]

Supports healthy gut microbiota composition* [6,9]

Supports Akkermansia muciniphila, a next-generation probiotic* [7,8] 

Promotes the growth of butyrate-producing bacteria* [6]

Supports healthy SCFA levels (butyrate)* [6]

Supports optimal intestinal absorption and barrier functions* [14–17]

Supports healthy intestinal stem cells* [16]

Supports normal glycoprotein synthesis involved in protecting intestinal mucosa from damage* [14,18]

Supports healthy mucin biosynthesis, glycosylation, and secretion* [6,16,19–22]

Supports intestinal vagal nerve appetite signaling* [23]


Supports healthy brain function*

Supports healthy O-GlcNAcylation [important for healthy brain function]* [24–29]

Supports the maintenance of brain glycogen [brain glycogen is ~25% glucosamine, which acts as a reservoir for brain needs]* [30]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]L. Zeibich, O. Schmidt, H.L. Drake, Environ. Microbiol. 21 (2019) 1436–1451.

[2]L. Chen, A.R. Walker, R.A. Burne, L. Zeng, Appl. Environ. Microbiol. 87 (2020).

[3]F.C. Pereira, K. Wasmund, I. Cobankovic, N. Jehmlich, C.W. Herbold, K.S. Lee, B. Sziranyi, C. Vesely, T. Decker, R. Stocker, B. Warth, M. von Bergen, M. Wagner, D. Berry, Nat. Commun. 11 (2020) 5104.

[4]S. Musilova, V. Rada, E. Vlkova, V. Bunesova, Benef. Microbes 5 (2014) 273–283.

[5]P. Paone, P.D. Cani, Gut 69 (2020) 2232–2243.

[6]S. Hino, T. Mizushima, K. Kaneko, E. Kawai, T. Kondo, T. Genda, T. Yamada, K. Hase, N. Nishimura, T. Morita, J. Nutr. 150 (2020) 2656–2665.

[7]A.V. Ropot, A.M. Karamzin, O.V. Sergeyev, Curr. Microbiol. 77 (2020) 1363–1372.

[8]N. Ottman, M. Davids, M. Suarez-Diez, S. Boeren, P.J. Schaap, V.A.P. Martins Dos Santos, H. Smidt, C. Belzer, W.M. de Vos, Appl. Environ. Microbiol. 83 (2017).

[9]M. Lopez-Siles, T.M. Khan, S.H. Duncan, H.J.M. Harmsen, L.J. Garcia-Gil, H.J. Flint, Appl. Environ. Microbiol. 78 (2012) 420–428.

[10]T. Tsuji, J. Yoon, N. Kitano, T. Okura, K. Tanaka, Aging Clin. Exp. Res. 28 (2016) 197–205.

[11]D. Kubomura, T. Ueno, M. Yamada, A. Tomonaga, I. Nagaoka, Exp. Ther. Med. 13 (2017) 1614–1621.

[12]S. Salvatore, R. Heuschkel, S. Tomlin, S.E. Davies, S. Edwards, J.A. Walker-Smith, I. French, S.H. Murch, Aliment. Pharmacol. Ther. 14 (2000) 1567–1579.

[13]A. Zhu, I. Patel, M. Hidalgo, V. Gandhi, Natural Medicine Journal 7 (2015) 2015–2004.

[14]A.F. Burton, F.H. Anderson, Am. J. Gastroenterol. 78 (1983) 19–22.

[15]M. Zhao, X. Xiong, K. Ren, B. Xu, M. Cheng, C. Sahu, K. Wu, Y. Nie, Z. Huang, R.S. Blumberg, X. Han, H.-B. Ruan, EMBO Mol. Med. 10 (2018).

[16]Z. Wang, J. Hu, X. Yang, L. Yin, M. Wang, Y. Yin, J. Li, H. Yang, Y. Yin, Anim Nutr 8 (2022) 10–17.

[17]Y. Liu, W. Xu, L. Liu, L. Guo, Y. Deng, J. Liu, Bangladesh J. Pharmacol. 7 (2012) 281–284.

[18]A. Breborowicz, M. Kuzlan-Pawlaczyk, K. Wieczorowska-Tobis, J. Wisniewska, P. Tam, I. French, G. Wu, Adv. Perit. Dial. 14 (1998) 31–35.

[19]G.L. Kauffman Jr, J. Clin. Gastroenterol. 3 (1981) 45–50.

[20]J. Martínez-Ocaña, P. Maravilla, A. Olivo-Díaz, Rev. Inst. Med. Trop. Sao Paulo 62 (2020) e64.

[21]A. Deters, F. Petereit, J. Schmidgall, A. Hensel, J. Pharm. Pharmacol. 60 (2008) 197–204.

[22]I.A. Finnie, A.D. Dwarakanath, B.A. Taylor, J.M. Rhodes, Gut 36 (1995) 93–99.

[23]Y. Okabe, T. Sakata, K. Fujimoto, K. Kurata, H. Yoshimatsu, K. Ueda, Proc. Soc. Exp. Biol. Med. 188 (1988) 23–29.

[24]B.E. Lee, P.-G. Suh, J.-I. Kim, Exp. Mol. Med. 53 (2021) 1674–1682.

[25]S. Gaunitz, L.O. Tjernberg, S. Schedin-Weiss, J. Neurochem. 159 (2021) 292–304.

[26]Y. Cho, H. Hwang, M.A. Rahman, C. Chung, H. Rhim, Sci. Rep. 10 (2020) 6924.

[27]J. Park, M.K.P. Lai, T.V. Arumugam, D.-G. Jo, Neuromolecular Med. 22 (2020) 171–193.

[28]E.G. Wheatley, E. Albarran, C.W. White 3rd, G. Bieri, C. Sanchez-Diaz, K. Pratt, C.E. Snethlage, J.B. Ding, S.A. Villeda, Curr. Biol. 29 (2019) 3359–3369.e4.

[29]O. Lagerlöf, J. Bioenerg. Biomembr. 50 (2018) 241–261.

[30]R.C. Sun, L.E.A. Young, R.C. Bruntz, K.H. Markussen, Z. Zhou, L.R. Conroy, T.R. Hawkinson, et al, Cell Metab. 33 (2021) 1404–1417.e9.