Rhodiola rosea Root Extract

Rhodiola rosea is an adaptogenic herb with a long history of folk use in Russia, Scandinavia, Baltic countries, and Asia. Its traditional uses included being a tonic to help counter fatigue and enhance the capacity for mental and physical work performance. R. rosea grows in cold regions and in mountainous parts of Europe through Central Asia. This ability to adapt to extreme temperatures and environments may be part of the reason R. rosea was studied (and eventually categorized as an adaptogen) by Russian researchers. Decades of research support this adaptogenic categorization, with R. rosea supporting resistance to a variety of different types of stressors. R. rosea contains many biologically active substances; Its rosavins (rosavin, rosin, and rosarian) and salidroside are the major bioactive compounds for producing standardized extracts. Rhodiola rosea main uses are in helping with adaptation to physically and mentally fatiguing circumstances and supporting energy, alertness, concentration, mental stamina, and mood.*


TOP BENEFITS OF RHODIOLA ROSEA

Supports brain health and cognitive performance *
Supports adaptation to stress *
Supports mood *


NEUROHACKER’S RHODIOLA ROSEA SOURCING

Rhodiola rosea is an extract made from the plant's roots and uses about a 50:1 herb to extract ratio. 

Rhodiola rosea root extract is standardized to contain not less than 3% rosavins and 1% salidroside.

Rhodiola rosea root extract is non-GMO and vegan.


RHODIOLA ROSEA FORMULATING PRINCIPLES AND RATIONALE

We consider Rhodiola rosea to be an herbal adaptogen, so expect it to follow hormetic dosing principles. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response (see Qualia Dosing Principles) and don’t follow “more is better” formulating principles. This is consistent with the comparative studies on R. rosea root, where for example, an amount of 370 mg supported capacity for mental work, while a higher amount had similar (but not greater) benefits [1]. Standardized R. rosea root extracts have most commonly been used in human studies at servings ranging from 100 mg to 400 mg/day—in the nootropic community a serving between 150-300 mg a day is commonly used. We use a serving within this range.*


KEY MECHANISMS

Supports brain function and cognition*

Supports attention, capacity for mental work, and resistance to mental fatigue* [1–6]

Supports mental and physical performance during stress* [1–4]

Supports a healthy mood* [7–9]

Supports serotonin levels* [10]

Supports neuroplasticity mechanisms* [11,12]

Supports neuroprotective functions* [13–18]

Supports healthy levels of stress hormones and other stress response mediators* [2,19–22]

Supports β-endorphin signaling* [22,23]

Influences monoamine metabolism* [24,25]

Influences acetylcholine metabolism* [13,25]


Promotes physical stamina*

Supports resistance to physical fatigue* [3]

Supports endurance performance* [26]

Supports exercise-induced antioxidant defenses* [27]

 

Promotes healthy aging and longevity*

Supports mitochondrial function* [17,28,29]

Supports antioxidant enzymes* [13,15,27,30]

Supports glutathione and thioredoxin levels* [15,17]


Complementary ingredients*

Ginkgo biloba for cognitive function* [31]

Saffron for mood support* [32] 


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]V.A. Shevtsov, B.I. Zholus, V.I. Shervarly, V.B. Vol’skij, Y.P. Korovin, M.P. Khristich, N.A. Roslyakova, G. Wikman, Phytomedicine 10 (2003) 95–105.

[2]E.M. Olsson, B. von Schéele, A.G. Panossian, Planta Med. 75 (2009) 105–112.

[3]A.A. Spasov, G.K. Wikman, V.B. Mandrikov, I.A. Mironova, V.V. Neumoin, Phytomedicine 7 (2000) 85–89.

[4]V. Darbinyan, A. Kteyan, A. Panossian, E. Gabrielian, G. Wikman, H. Wagner, Phytomedicine 7 (2000) 365–371.

[5]D. Edwards, A. Heufelder, A. Zimmermann, Phytother. Res. 26 (2012) 1220–1225.

[6]T. Koop, A. Dienel, M. Heldmann, T.F. Münte, Phytother. Res. 34 (2020) 3287–3297.

[7]M. Cropley, A.P. Banks, J. Boyle, Phytother. Res. 29 (2015) 1934–1939.

[8]A. Bystritsky, L. Kerwin, J.D. Feusner, J. Altern. Complement. Med. 14 (2008) 175–180.

[9]V. Darbinyan, G. Aslanyan, E. Amroyan, E. Gabrielyan, C. Malmström, A. Panossian, Nord. J. Psychiatry 61 (2007) 343–348.

[10]C. Mannucci, M. Navarra, E. Calzavara, A.P. Caputi, G. Calapai, Phytomedicine 19 (2012) 1117–1124.

[11]C. Concerto, C. Infortuna, M.R.A. Muscatello, A. Bruno, R. Zoccali, E. Chusid, E. Aguglia, F. Battaglia, Complement. Ther. Med. 41 (2018) 141–146.

[12]Q.G. Chen, Y.S. Zeng, Z.Q. Qu, J.Y. Tang, Y.J. Qin, P. Chung, R. Wong, U. Hägg, Phytomedicine 16 (2009) 830–838.

[13]J. Zhang, Y.-F. Zhen, Pu-Bu-Ci-Ren, L.-G. Song, W.-N. Kong, T.-M. Shao, X. Li, X.-Q. Chai, Behav. Brain Res. 244 (2013) 70–81.

[14]Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y.-K. Lin, Y. Li, Z.-Q. Zhong, W.Y. Chan, PLoS One 7 (2012) e29641.

[15]Z.-Q. Qu, Y. Zhou, Y.-S. Zeng, Y. Li, P. Chung, Biomed. Environ. Sci. 22 (2009) 318–326.

[16]S.I. Jang, H.O. Pae, B.M. Choi, G.S. Oh, S. Jeong, H.J. Lee, H.Y. Kim, K.J. Kang, Y.G. Yun, Y.C. Kim, H.T. Chung, Immunopharmacol. Immunotoxicol. 25 (2003) 295–304.

[17]L. Zhang, H. Yu, X. Zhao, X. Lin, C. Tan, G. Cao, Z. Wang, Neurochem. Int. 57 (2010) 547–555.

[18]D.R. Palumbo, F. Occhiuto, F. Spadaro, C. Circosta, Phytother. Res. 26 (2012) 878–883.

[19]A. Panossian, M. Hambardzumyan, A. Hovhanissyan, G. Wikman, Drug Target Insights 2 (2007) 39–54.

[20]A. Panossian, G. Wikman, P. Kaur, A. Asea, Front. Neurosci. 6 (2012) 6.

[21]A. Panossian, G. Wikman, Pharmaceuticals 3 (2010) 188–224.

[22]I.B. Lishmanov, Z.V. Trifonova, A.N. Tsibin, L.V. Maslova, L.A. Dement’eva, Biull. Eksp. Biol. Med. 103 (1987) 422–424.

[23]G.S. Kelly, Altern. Med. Rev. 6 (2001) 293–302.

[24]D. van Diermen, A. Marston, J. Bravo, M. Reist, P.-A. Carrupt, K. Hostettmann, J. Ethnopharmacol. 122 (2009) 397–401.

[25]D. van Diermen, A. Marston, J. Bravo, M. Reist, P.A. Carrupt, K. Hostettmann, Planta Med. 74 (2008) PA202.

[26]K. De Bock, B.O. Eijnde, M. Ramaekers, P. Hespel, Int. J. Sport Nutr. Exerc. Metab. 14 (2004) 298–307.

[27]J. Xu, Y. Li, Mol. Med. Rep. 6 (2012) 1195–1198.

[28]S. Yu, M. Liu, X. Gu, F. Ding, Cell. Mol. Neurobiol. 28 (2008) 1067–1078.

[29]H. Zhong, H. Xin, L.-X. Wu, Y.-Z. Zhu, J. Pharmacol. Sci. 114 (2010) 399–408.

[30]Y. Zhu, Y.-P. Shi, D. Wu, Y.-J. Ji, X. Wang, H.-L. Chen, S.-S. Wu, D.-J. Huang, W. Jiang, DNA Cell Biol. 30 (2011) 809–819.

[31]H.M. Al-Kuraishy, J Intercult Ethnopharmacol 5 (2016) 7–13.

[32]M. Bangratz, S.A. Abdellah, A. Berlin, C. Blondeau, A. Guilbot, M. Dubourdeaux, P. Lemoine, Neuropsychiatr. Dis. Treat. 14 (2018) 1821.