B-complex vitamins
Supports energy metabolism*
Supports brain health and cognitive function*
Supports cardiometabolic health*
Supports general health and well-being*
B-Complex Vitamins from Saccharomyces cerevisiae culture is an inactivated yeast that contains standardized amounts of all eight B vitamins—thiamine (B1), riboflavin (B2), niacin (B3), pantothenic acid (B5), pyridoxine (B6), biotin (B7), folic acid (B9), and cobalamin (B12). B vitamins have essential roles in cellular metabolism and energy production. Every B vitamin is either a cofactor or a precursor for a cofactor for a key metabolic process. B vitamins are essential for the generation of cell energy as ATP in mitochondria. ATP is the molecule that powers all the cellular processes that require energy, from building new molecules and repairing tissues to powering muscle contraction and sustaining neuronal activity. Saccharomyces cerevisiae is commonly found in food. It is also known as baker's yeast when it’s used to leaven bread, as brewer’s yeast when it’s used to brew beer, and as nutritional yeast when it’s used as a food product.*
B-Complex Vitamins from Saccharomyces cerevisiae culture is a fermented, and then inactivated dried whole-cell yeast containing standardized amounts of all eight B-complex vitamins.
Although yeast is naturally rich in B-vitamins, during fermentation, standardized levels of B-complex vitamins are added to further increase the content.
This ingredient is non-GMO, clean label, gluten-free and vegan.
We chose a B-vitamin-enriched postbiotic yeast (Saccharomyces cerevisiae) to deliver fermented, more bioavailable B vitamins in a food matrix. During the fermentation process, the yeast is supplemented with specific levels of B vitamins, allowing the B vitamins to interact with, and be incorporated into the yeast. And the gentle processing of the yeast preserves the minerals, ß-glucans, peptides, and nucleotides that naturally occur in nutritional yeasts. Supplying the B-vitamins in this form also means that the vitamins occur in the forms they would in metabolic pathways in our cells. A serving of Qualia NAD+ is intended to augment the B vitamin content of the diet, supplying between 28-125% of the daily value, depending on the B vitamin.*
Vitamin B1 |Thiamine
Supports energy metabolism* [1]
Cofactor in the pyruvate dehydrogenase complex* [1]
Cofactor in the pentose phosphate pathway* [1]
Supports antioxidant defenses* [1]
Supports healthy brain function* [1]
May help counter the production of advanced glycation end-products (AGEs)* [2,3]
Supports healthy blood pressure* [4]
Supports healthy blood glucose levels* [5]
Vitamin B2 | Riboflavin
Supports mitochondrial energy (ATP) production* [6,7]
Supports NAD+ production* [8]
Supports vitamin metabolism* [6,9]
Supports antioxidant defenses* [6,10,11]
Vitamin B3 | Niacin
Precursor of NADH/NAD+ (nicotinamide adenine dinucleotide)* [12]
Supports breakdown of sugars and fats for energy* [12]
Supports mitochondrial production of ATP* [12,13]
Precursor of NADPH/NADP+ (nicotinamide adenine dinucleotide phosphate)* [12]
Supports cytochrome P450 enzymes that detoxify xenobiotics* [14]
Supports antioxidant defenses* [15]
Influences senescence, cell proliferation, apoptosis* [12]
NAD+ is a substrate for sirtuins (SIRT1 to SIRT7), which promote healthspan* [16]
NAD+ is a substrate for poly(ADP-ribose) polymerase-1 (PARP-1), which is involved in DNA repair and essential for genome stability* [16,17]
NAD+ supports mitochondrial function* [18,19]
NAD+ supports stem cell function* [19]
Supports neuroprotective functions* [20,21]
Supports healthy cardiovascular function* [22–27]
Vitamin B5 | Pantothenic acid
Required for the synthesis of coenzyme A (CoA)* [28]
Coenzyme A is a cofactor in several important cellular metabolic pathways* [29]
Coenzyme A has a key role in energy metabolism, especially the conversion of sugars and fats into energy* [30]
Coenzyme A is required for the synthesis of the neurotransmitter acetylcholine* [31]
Supports healthy adrenal function* [32–38]
Vitamin B6 | Pyridoxine
Cofactor in about 100 essential enzyme reactions, including enzymes of glucose, fatty acid, and amino acid metabolism* [39]
Cofactor in the kynurenine pathway; required for the synthesis of NAD+ from tryptophan* [8]
Cofactor in the synthesis of heme, an iron-containing molecule found in hemoglobin* [40]
Cofactor for the enzyme aromatic L-amino acid decarboxylase, which catalyzes the synthesis of serotonin from 5-hydroxytryptophan (5-HTP) and dopamine from L-3,4-dihydroxyphenylalanine (L-DOPA)* [41–45]
Supports the synthesis of noradrenaline* [44], melatonin* [45], and GABA* [46–51]
Supports the synthesis of neurotransmitters involved in memory, executive function, mood regulation, focus, motivation, and sleep regulation* [52]
Supports healthy immune function* [53–59]
Vitamin B7 | Biotin
Biotin-dependent enzymes have important roles in pathways associated with gluconeogenesis, lipid catabolism, and branched chain amino acid catabolism* [60–62]
Biotin regulates chromatin structure and gene expression* [60,61]
Supports nail and hair health* [63–66]
Vitamin B9 | Folic acid
Folate coenzymes mediate the transfer of one-carbon units (one-carbon metabolism)* [7,67]
Folate coenzymes act as cofactors for several enzymes involved in key metabolic pathways, specifically in nucleic acid (DNA and RNA) and amino acid metabolism* [7,67]
Methyltetrahydrofolate is used by the cytosolic enzyme methionine synthase to generate methionine and tetrahydrofolate from homocysteine* [7,67]
Methionine is required for the synthesis of S-adenosylmethionine (SAMe), a methyl group donor used in many biological methylation reactions* [7,67]
Methionine synthase is essential for the methylation of nucleic acids (DNA and RNA) and proteins* [7,67]
Adequate folate status is needed to maintain NAD+ levels* [68–70]
Supports cardiovascular and cerebrovascular function* [71–73]
Vitamin B12 | Cobalamin
Supports the citric acid cycle (i.e., Krebs cycle) – cell energy metabolism* [7,74]
Supports healthy cardiovascular and cerebrovascular function* [71–73]
Supports methionine synthase activity (one-carbon metabolism)* [7,74]
Supports healthy vision* [75–79]
Supports a healthy gut microbiome* [80,81]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
REFERENCES
[1]D.A. Bender, in: Nutritional Biochemistry of the Vitamins, Cambridge University Press, 2003, pp. 148–171.
[2]S. Kousar, M.A. Sheikh, M. Asghar, J. Pak. Med. Assoc. 62 (2012) 1033–1038.
[3]N. Karachalias, R. Babaei-Jadidi, C. Kupich, N. Ahmed, P.J. Thornalley, Ann. N. Y. Acad. Sci. 1043 (2005) 777–783.
[4]F. Alaei-Shahmiri, M.J. Soares, Y. Zhao, J. Sherriff, Diabetes Metab. Syndr. 9 (2015) 213–217.
[5]F. Alaei Shahmiri, M.J. Soares, Y. Zhao, J. Sherriff, Eur. J. Nutr. 52 (2013) 1821–1824.
[6]A. Saedisomeolia, M. Ashoori, Adv. Food Nutr. Res. 83 (2018) 57–81.
[7]J.M. Berg, J.L. Tymoczko, G.J. Gatto, L. Stryer, eds., Biochemistry, 8th ed, W.H. Freeman and Company, 2015.
[8]A.A.-B. Badawy, Int. J. Tryptophan Res. 10 (2017) 1178646917691938.
[9]C. Kutzbach, E.L. Stokstad, Biochim. Biophys. Acta 250 (1971) 459–477.
[10]N. Couto, J. Wood, J. Barber, Free Radic. Biol. Med. 95 (2016) 27–42.
[11]R.L. Fagan, B.A. Palfey, in: H.-W. (ben) Liu, L. Mander (Eds.), Comprehensive Natural Products II, Elsevier, Oxford, 2010, pp. 37–113.
[12]A.A. Sauve, J. Pharmacol. Exp. Ther. 324 (2008) 883–893.
[13]N. Pollak, C. Dölle, M. Ziegler, Biochem. J 402 (2007) 205–218.
[14]A.V. Pandey, C.E. Flück, Pharmacol. Ther. 138 (2013) 229–254.
[15]G. Filomeni, G. Rotilio, M.R. Ciriolo, Biochem. Pharmacol. 64 (2002) 1057–1064.
[16]A.R. Mendelsohn, J.W. Larrick, Rejuvenation Res. 20 (2017) 244–247.
[17]J.B. Kirkland, Nutr. Cancer 46 (2003) 110–118.
[18]L. Mouchiroud, R.H. Houtkooper, N. Moullan, E. Katsyuba, D. Ryu, C. Cantó, A. Mottis, Y.-S. Jo, M. Viswanathan, K. Schoonjans, L. Guarente, J. Auwerx, Cell 154 (2013) 430–441.
[19]H. Zhang, D. Ryu, Y. Wu, K. Gariani, X. Wang, P. Luan, D. D’Amico, E.R. Ropelle, M.P. Lutolf, R. Aebersold, K. Schoonjans, K.J. Menzies, J. Auwerx, Science 352 (2016) 1436–1443.
[20]J. Chen, X. Cui, A. Zacharek, H. Jiang, C. Roberts, C. Zhang, M. Lu, A. Kapke, C.S. Feldkamp, M. Chopp, Ann. Neurol. 62 (2007) 49–58.
[21]A. Shehadah, J. Chen, A. Zacharek, Y. Cui, M. Ion, C. Roberts, A. Kapke, M. Chopp, Neurobiol. Dis. 40 (2010) 277–283.
[22]L.-H. Zhang, V.S. Kamanna, S.H. Ganji, X.-M. Xiong, M.L. Kashyap, J. Lipid Res. 53 (2012) 941–950.
[23]J.W.A. van der Hoorn, W. de Haan, J.F.P. Berbée, L.M. Havekes, J.W. Jukema, P.C.N. Rensen, H.M.G. Princen, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 2016–2022.
[24]Y. Si, Y. Zhang, J. Zhao, S. Guo, L. Zhai, S. Yao, H. Sang, N. Yang, G. Song, J. Gu, S. Qin, Mediators Inflamm. 2014 (2014) 263786.
[25]E. Fabbrini, B.S. Mohammed, K.M. Korenblat, F. Magkos, J. McCrea, B.W. Patterson, S. Klein, J. Clin. Endocrinol. Metab. 95 (2010) 2727–2735.
[26]F.Y. Jin, V.S. Kamanna, M.L. Kashyap, Arterioscler. Thromb. Vasc. Biol. 19 (1999) 1051–1059.
[27]M. Hernandez, S.D. Wright, T.-Q. Cai, Biochem. Biophys. Res. Commun. 355 (2007) 1075–1080.
[28]A.G. Tahiliani, C.J. Beinlich, in: G.D. Aurbach (Ed.), Vitamins & Hormones, Academic Press, 1991, pp. 165–228.
[29]R. Leonardi, Y.-M. Zhang, C.O. Rock, S. Jackowski, Prog. Lipid Res. 44 (2005) 125–153.
[30]F. Pietrocola, L. Galluzzi, J.M. Bravo-San Pedro, F. Madeo, G. Kroemer, Cell Metab. 21 (2015) 805–821.
[31]S.K. Fisher, S. Wonnacott, in: S.T. Brady, G.J. Siegel, R.W. Albers, D.L. Price (Eds.), Basic Neurochemistry (Eighth Edition), Academic Press, New York, 2012, pp. 258–282.
[32]L. Pan, S. Jaroenporn, T. Yamamoto, K. Nagaoka, I. Azumano, M. Onda, G. Watanabe, K. Taya, Reprod. Med. Biol. 11 (2012) 101–104.
[33]S. Jaroenporn, T. Yamamoto, A. Itabashi, K. Nakamura, I. Azumano, G. Watanabe, K. Taya, Biol. Pharm. Bull. 31 (2008) 1205–1208.
[34]P.E. Schwabedal, K. Pietrzik, W. Wittkowski, Cardiology 72 Suppl 1 (1985) 187–189.
[35]K. Pietrzik, C. Hesse, D. Hötzel, Int. J. Vitam. Nutr. Res. 45 (1975) 251–261.
[36]B.B. Longwell, A.E. Reif, E. Hansbury, Endocrinology 62 (1958) 565–572.
[37]A.B. Eisenstein, Endocrinology 60 (1957) 298–302.
[38]E.P. Ralli, M.E. Dumm, Vitam. Horm. 11 (1953) 133–158.
[39]Linus Pauling Institute Oregon State University, (n.d.).
[40]G.A. Hunter, G.C. Ferreira, Biochim. Biophys. Acta 1814 (2011) 1467–1473.
[41]G. Delitala, A. Masala, S. Alagna, L. Devilla, J. Clin. Endocrinol. Metab. 42 (1976) 603–606.
[42]D.G. Mappouras, J. Stiakakis, E.G. Fragoulis, Mol. Cell. Biochem. 94 (1990) 147–156.
[43]G.F.G. Allen, V. Neergheen, M. Oppenheim, J.C. Fitzgerald, E. Footitt, K. Hyland, P.T. Clayton, J.M. Land, S.J.R. Heales, J. Neurochem. 114 (2010) 87–96.
[44]M.E. Gnegy, in: S.T. Brady, G.J. Siegel, R.W. Albers, D.L. Price (Eds.), Basic Neurochemistry (Eighth Edition), Academic Press, New York, 2012, pp. 283–299.
[45]J.G. Hensler, in: S.T. Brady, G.J. Siegel, R.W. Albers, D.L. Price (Eds.), Basic Neurochemistry (Eighth Edition), Academic Press, New York, 2012, pp. 300–322.
[46]T.S. Rajeswari, E. Radha, Exp. Gerontol. 19 (1984) 87–93.
[47]M. Díaz-Muñoz, R. Tapia, J. Neurosci. Res. 20 (1988) 376–382.
[48]V.V. Tsybul’skiĭ, E.R. Nagiev, Radiobiologiia 31 (1991) 201–208.
[49]O.A.C. Petroff, Neuroscientist 8 (2002) 562–573.
[50]D.Y. Yoo, W. Kim, D.W. Kim, K.-Y. Yoo, J.Y. Chung, H.Y. Youn, Y.S. Yoon, S.Y. Choi, M.-H. Won, I.K. Hwang, Neurochem. Res. 36 (2011) 713–721.
[51]Y. Huang, L. Su, J. Wu, PLoS One 11 (2016) e0157466.
[52]M. Ebadi, Neurochem. Int. 3 (1981) 181–205.
[53]M.C. Talbott, L.T. Miller, N.I. Kerkvliet, Am. J. Clin. Nutr. 46 (1987) 659–664.
[54]S.N. Meydani, J.D. Ribaya-Mercado, American Journal of … (1991).
[55]K. Folkers, M. Morita, J. McRee Jr, Biochem. Biophys. Res. Commun. 193 (1993) 88–92.
[56]S. Doke, N. Inagaki, T. Hayakawa, H. Tsuge, Biosci. Biotechnol. Biochem. 61 (1997) 1331–1336.
[57]H.-K. Kwak, C.M. Hansen, J.E. Leklem, K. Hardin, T.D. Shultz, J. Nutr. 132 (2002) 3308–3313.
[58]C.-H. Cheng, S.-J. Chang, B.-J. Lee, K.-L. Lin, Y.-C. Huang, Eur. J. Clin. Nutr. 60 (2006) 1207–1213.
[59]C. Kobayashi, K. Kurohane, Y. Imai, Biol. Pharm. Bull. 35 (2012) 532–538.
[60]L. Riveron-Negrete, C. Fernandez-Mejia, Mini Rev. Med. Chem. 17 (2017) 529–540.
[61]D.M. Mock, J. Nutr. 147 (2017) 1487–1492.
[62]L. Tong, Cell. Mol. Life Sci. 70 (2013) 863–891.
[63]V.E. Colombo, F. Gerber, M. Bronhofer, G.L. Floersheim, J. Am. Acad. Dermatol. 23 (1990) 1127–1132.
[64]G.L. Floersheim, Z. Hautkr. 64 (1989) 41–48.
[65]L.G. Hochman, R.K. Scher, M.S. Meyerson, Cutis 51 (1993) 303–305.
[66]D.P. Patel, S.M. Swink, L. Castelo-Soccio, Skin Appendage Disord 3 (2017) 166–169.
[67]O. Stanger, Curr. Drug Metab. 3 (2002) 211–223.
[68]I.G. Beraia, Vopr. Pitan. (1984) 36–38.
[69]S.J. James, L. Yin, M.E. Swendseid, J. Nutr. 119 (1989) 661–664.
[70]S.M. Henning, M.E. Swendseid, W.F. Coulson, The Journal of Nutrition 127 (1997) 30–36.
[71]J. Selhub, Annu. Rev. Nutr. 19 (1999) 217–246.
[72]E. Lonn, S. Yusuf, M.J. Arnold, P. Sheridan, J. Pogue, M. Micks, M.J. McQueen, J. Probstfield, G. Fodor, C. Held, J. Genest Jr, Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators, N. Engl. J. Med. 354 (2006) 1567–1577.
[73]D. Serapinas, E. Boreikaite, A. Bartkeviciute, R. Bandzeviciene, M. Silkunas, D. Bartkeviciene, Reprod. Toxicol. 72 (2017) 159–163.
[74]F. O’Leary, S. Samman, Nutrients 2 (2010) 299–316.
[75]E.M. Chester, D.P. Agamanolis, J.W. Harris, M. Victor, J.D. Hines, J.A. Kark, Acta Neurol. Scand. 61 (1980) 9–26.
[76]S.S. Reddy, Y.K. Prabhakar, C.U. Kumar, P.Y. Reddy, G.B. Reddy, Mol. Vis. 26 (2020) 311–325.
[77]J. Guo, S. Ni, Q. Li, J.-Z. Wang, Y. Yang, Neurosci. Bull. 35 (2019) 325–335.
[78]O.P. Anand, Delhi Journal of Ophthalmology 29 (2019).
[79]Y. Yamazaki, F. Hayamizu, C. Tanaka, Curr. Ther. Res. Clin. Exp. 61 (2000) 443–451.
[80]Y. Xu, S. Xiang, K. Ye, Y. Zheng, X. Feng, X. Zhu, J. Chen, Y. Chen, Front. Microbiol. 9 (2018) 2780.
[81]X. Zhu, S. Xiang, X. Feng, H. Wang, S. Tian, Y. Xu, L. Shi, L. Yang, M. Li, Y. Shen, J. Chen, Y. Chen, J. Han, J. Agric. Food Chem. 67 (2019) 916–926.