Caffeine (from Green Tea Extract)

Caffeine is a methylxanthine compound used to counter fatigue and promote alertness. It’s found in the seeds, fruits, nuts, or leaves of a number of plants native to Africa, East Asia, and South America. These include coffee beans (as well as coffee cherry fruits), cocoa beans, guarana berries, kola nuts, and leaves from tea, guayusa, and yerba mate. Caffeine is quickly absorbed in the gastrointestinal tract and is able to easily cross the blood-brain barrier to reach the brain, where it has stimulating and invigorating mechanisms. The caffeine we get in a morning coffee, a cup of tea, or an energy drink can help us perform better physically and mentally.* It does this by promoting arousal (wakefulness), which is a necessary ingredient for being able to pay attention and react quickly. Not surprisingly, this has led to caffeine being one of the most widely used and studied substances for both sports performance and brain function.* In addition to being a source of caffeine, green tea (Camelia sinensis) is rich in polyphenols with antioxidant properties, including catechins, theaflavins, tannins, and flavonoids [1].


TOP BENEFITS OF CAFFEINE

Supports cognitive performance*

Supports exercise performance*

Supports mood* 


QUALIA’S CAFFEINE SOURCING

Caffeine sourced from Green Tea Extract standardized to not less than 60% caffeine.

Caffeine from Green Tea Extract is a non-GMO, gluten-free, vegan, Kosher, and Halal certified ingredient.

 

CAFFEINE FORMULATING PRINCIPLES AND RATIONALE

We consider caffeine to follow hormetic dosing principles (see Qualia Dosing Principles) and to have a hormetic range (i.e., a dosing range below and above which results would be poorer). Caffeine is one of the most used, and best studied nootropic and ergogenic compounds. As a nootropic (i.e., to promote alertness, focus, reaction time, etc.) caffeine is typically used in amounts ranging from 50 to 200 mg. As an ergogenic (i.e., for sports performance) just prior to exercise, the upper end of the serving range can be as high as 600 mg [2]. In both of these cases, responses to caffeine tend to follow a hormetic curve, with low-to-moderate doses of caffeine supporting better cognitive and sports performance, but serving above the higher end of the range hindering performance. We have selected a serving of caffeine from green tea at the lower end of the range for nootropic purposes.*


CAFFEINE KEY MECHANISMS

 Supports brain function*

Supports optimal adenosine receptor function* [3]

Optimizes, via adenosine receptor antagonism, the levels of the neurotransmitters acetylcholine, glutamate, serotonin, dopamine, and norepinephrine* [4,5]

Supports healthy acetylcholine signaling* [5–8]

Supports healthy dopamine signaling* [5,9–14]

Supports healthy serotonin signaling* [5,8,15–18]

Supports healthy glutamate signaling* [5,9,10]

Supports healthy GABA signaling* [5,8]

Supports healthy noradrenaline signaling* [5,17]

Supports healthy cortical activation in the brain* [3,5]

Supports healthy cerebral metabolism* [3,5]

Promotes wakefulness* [19]

 

Supports cognitive function*

Supports cognitive performance* [2,5,20–23]

Supports executive function* [24–26]

Supports information processing rate* [3,27,28]

Supports simple and sustained attention* [2,24,28,29]

Supports vigilance* [2,29]

Supports reaction time* [2,22,23,28]

Supports reasoning* [21]

Supports creative thinking* [25]

Supports resistance to mental fatigue* [27,29]

Supports healthy neuroprotective functions* [30,31]

 

Supports a healthy mood*

Supports positive affect* [5,22,23,26,32]

 

Supports physical performance*

Supports healthy resistance to physical fatigue* [20,23,24,33]

Supports healthy resistance to perceived exhaustion* [2]

Supports muscle endurance and strength exercise activities* [2]

Supports speed, power, and agility during intense exercise* [2] 


Other actions*

Supports optimal metabolic rate* [34–36]

Supports healthy phosphodiesterase balance* [37]

 

Complementary ingredients*

L-Theanine to support cognitive performance* [27,38–41]

Choline donors (e.g., citicoline, alpha-GPC) to support attention, concentration, and working memory* [42]

L-ornithine to support enhanced mood and cognitive performance* [43]

Alpinia galanga to support cognitive performance* [44,45]



*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.



REFERENCES

[1]N. Khan, H. Mukhtar, Curr. Pharm. Des. 19 (2013) 6141–6147.

[2]T.M. McLellan, J.A. Caldwell, H.R. Lieberman, Neurosci. Biobehav. Rev. 71 (2016) 294–312.

[3]G. Burnstock, Advances in Experimental Medicine and Biology 986 (2013) 1–12.

[4]B.B. Fredholm, Pharmacol. Toxicol. 76 (1995) 93–101.

[5]B.B. Fredholm, K. Bättig, J. Holmén, A. Nehlig, E.E. Zvartau, Pharmacol. Rev. 51 (1999) 83–133.

[6]E. Acquas, G. Tanda, G. Di Chiara, Neuropsychopharmacology 27 (2002) 182–193.

[7]A.J. Carter, W.T. O’Connor, M.J. Carter, U. Ungerstedt, J. Pharmacol. Exp. Ther. 273 (1995) 637–642.

[8]D. Shi, O. Nikodijević, K.A. Jacobson, J.W. Daly, Cell. Mol. Neurobiol. 13 (1993) 247–261.

[9]G. Racchetti, A. Lorusso, C. Schulte, D. Gavello, V. Carabelli, R. D’Alessandro, J. Meldolesi, J. Cell Sci. 123 (2010) 165–170.

[10]D. Quarta, J. Borycz, M. Solinas, K. Patkar, J. Hockemeyer, F. Ciruela, C. Lluis, R. Franco, A.S. Woods, S.R. Goldberg, S. Ferré, J. Neurochem. 91 (2004) 873–880.

[11]B.E. Garrett, S.G. Holtzman, Eur. J. Pharmacol. 262 (1994) 65–75.

[12]K.R. Powell, P.M. Iuvone, S.G. Holtzman, Pharmacol. Biochem. Behav. 69 (2001) 59–70.

[13]M. Solinas, S. Ferré, Z.-B. You, M. Karcz-Kubicha, P. Popoli, S.R. Goldberg, J. Neurosci. 22 (2002) 6321–6324.

[14]X. Zheng, S. Takatsu, H. Wang, H. Hasegawa, Pharmacol. Biochem. Behav. 122 (2014) 136–143.

[15]D.J. Haleem, A. Yasmeen, M.A. Haleem, A. Zafar, Life Sci. 57 (1995) PL285–92.

[16]S. Khaliq, S. Haider, F. Naqvi, T. Perveen, S. Saleem, D.J. Haleem, Pak. J. Pharm. Sci. 25 (2012) 21–25.

[17]M.D. Chen, W.H. Lin, Y.M. Song, P.Y. Lin, L.T. Ho, Zhonghua Yi Xue Za Zhi 53 (1994) 257–261.

[18]M. Okada, Y. Kawata, K. Kiryu, K. Mizuno, K. Wada, H. Tasaki, S. Kaneko, J. Neurochem. 69 (2002) 2581–2588.

[19]T. Porkka-Heiskanen, Handb. Exp. Pharmacol. (2011) 331–348.

[20]V. Maridakis, P.J. O’Connor, P.D. Tomporowski, Int. J. Neurosci. 119 (2009) 1239–1258.

[21]M.J. Jarvis, Psychopharmacology 110 (1993) 45–52.

[22]A. Nehlig, J. Alzheimers. Dis. 20 Suppl 1 (2010) S85–94.

[23]C.H.S. Ruxton, Nutr. Bull. 33 (2008) 15–25.

[24]J. Lanini, J.C.F. Galduróz, S. Pompéia, Hum. Psychopharmacol. 31 (2016) 29–43.

[25]K. Soar, E. Chapman, N. Lavan, A.S. Jansari, J.J.D. Turner, Appetite 105 (2016) 156–163.

[26]F.L. Dodd, D.O. Kennedy, L.M. Riby, C.F. Haskell-Ramsay, Psychopharmacology 232 (2015) 2563–2576.

[27]C.F. Haskell, D.O. Kennedy, A.L. Milne, K.A. Wesnes, A.B. Scholey, Biol. Psychol. 77 (2008) 113–122.

[28]S.J.L. Einöther, T. Giesbrecht, Psychopharmacology 225 (2013) 251–274.

[29]A. Smith, Food Chem. Toxicol. 40 (2002) 1243–1255.

[30]M.A. Schwarzschild, K. Xu, E. Oztas, J.P. Petzer, K. Castagnoli, N. Castagnoli Jr, J.-F. Chen, Neurology 61 (2003) S55–61.

[31]M. Kolahdouzan, M.J. Hamadeh, CNS Neurosci. Ther. 23 (2017) 272–290.

[32]S.H. Backhouse, S.J.H. Biddle, N.C. Bishop, C. Williams, Appetite 57 (2011) 247–252.

[33]J.M. Davis, Z. Zhao, H.S. Stock, K.A. Mehl, J. Buggy, G.A. Hand, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (2003) R399–404.

[34]K.J. Acheson, B. Zahorska-Markiewicz, P. Pittet, K. Anantharaman, E. Jéquier, Am. J. Clin. Nutr. 33 (1980) 989–997.

[35]A. Astrup, S. Toubro, S. Cannon, P. Hein, L. Breum, J. Madsen, Am. J. Clin. Nutr. 51 (1990) 759–767.

[36]J. LeBlanc, M. Jobin, J. Côté, P. Samson, A. Labrie, J. Appl. Physiol. 59 (1985) 832–837.

[37]O.H. Choi, M.T. Shamim, W.L. Padgett, J.W. Daly, Life Sci. 43 (1988) 387–398.

[38]S.J.L. Einöther, V.E.G. Martens, J.A. Rycroft, E.A. De Bruin, Appetite 54 (2010) 406–409.

[39]T. Giesbrecht, J.A. Rycroft, M.J. Rowson, E.A. De Bruin, Nutr. Neurosci. 13 (2010) 283–290.

[40]G.N. Owen, H. Parnell, E.A. De Bruin, J.A. Rycroft, Nutr. Neurosci. 11 (2008) 193–198.

[41]C.N. Kahathuduwa, T.L. Dassanayake, A.M.T. Amarakoon, V.S. Weerasinghe, Nutr. Neurosci. 20 (2017) 369–377.

[42]S.E. Bruce, K.B. Werner, B.F. Preston, L.M. Baker, Int. J. Food Sci. Nutr. 65 (2014) 1003–1007.

[43]A. Misaizu, T. Kokubo, K. Tazumi, M. Kanayama, Y. Miura, Prev Nutr Food Sci 19 (2014) 367–372.

[44]S. Srivastava, M. Mennemeier, S. Pimple, J. Am. Coll. Nutr. 36 (2017) 631–639.

[45]S. Srivastava, M. Mennemeier, J.A. Chaudhary, J. Am. Coll. Nutr. 40 (2021) 224–236.